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ABSTRACT Nanotechnology has continuously contributed
to the fast development of diagnostic and therapeutic agents.
Theranostic nanomedicine has encompassed the ongoing efforts
on concurrent molecular imaging of biomarkers, delivery of
therapeutic agents, and monitoring of therapy response. Among
these formulations, polymer-based theranostic agents hold great
promise for the construction of multifunctional agents for trans-
lational medicine. In this article, we reviewed the state-of-the-art
polymeric nanoparticles, from preparation to application, as
potential theranostic agents for diagnosis and therapy. We sum-
marized several major polymer formulas, including polymeric
conjugate complexes, nanospheres, micelles, and dendrimers
for integrated molecular imaging and therapeutic applications.
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INTRODUCTION

Nanotechnology in biomedical application has advanced rap-
idly over the past few decades, and it bears merits to revolu-
tionize diagnosis and therapy inmany diseases, such as cancer,
arthritis, HIV, etc. (1). For therapeutic purpose, nanoscale
formulations, such as Doxil® and Abraxane®, have been
approved by the Food and Drug Administration (FDA) for
clinical applications due to the increased drug efficacy and
decreased systemic toxicity. Numerous promising nanoscaled
drug formulations are also under active clinical evaluation for
the treatment of various diseases (2,3)., Accompanying the
development of nanomedicine, various molecular imaging

devices have emerged as excellent tools for noninvasive, high
sensitivity and high resolution detection at cellular and mo-
lecular levels. Each imaging modality has its unique advan-
tages and disadvantages as summarized in Table I.

With the development of therapeutic and diagnostic tech-
niques, there is an urgent need to combine the imaging
function with therapeutic ability in one integrated platform
so as to dynamically monitor the progress of diseases and
therapeutic efficacy. In the conventional therapy, the prog-
ress of disease can hardly be monitored in real-time when
medicine is being applied. The imaging section, if needed,
has to be done separately. This divided therapy and imaging
method is likely to compromise the optimal therapeutic time
window to diseases, especially for malignant cancers, as well
as result in higher cost and suffering to patients.

In line with this demand of multifunctional systems, a
term ‘theranostics’ was coined to encompass the ongoing
efforts to integrate molecular imaging and therapeutic agents
into one system for clinical application (4,5). It is aimed to
enable co-delivery of medicine and imaging agents in a single
dose to bridges the gap between therapy and imaging to
facilitate real-time monitoring the therapeutic efficacy of
medicine. The nanoscale delivery system is a potential plat-
form to realize the simultaneous molecular imaging and
therapeutic purposes as required in the theranostic applica-
tion. Traditionally, nanoparticles were investigated with sin-
gle function, either for bioimaging or for therapy (Table II).
Recently, nanoparticles have evolved to enable simultaneous
imaging and therapy. Although it appears that the previous
paradigms of single functional nanoparticles could be used
directly to prepare theranostic platforms by including addi-
tional functionalities in the available delivery system (6), it
should be noted that realization of coordinated diagnosis and
therapy in the same regime of theranostics is not an easy task.
Molecular imaging agents are expected to enhance signal to
noise ratio at specific tissues. Such agents should present high
tissue specificity, followed by relatively rapid clearance from
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the animal/human body upon the completion of function. On
the other hand, therapeutic medicine loaded nanoparticles
are designed to have a relatively long circulation time in the
body so that nanoparticles with drug could passively accumu-
late at the diseased site, such as tumor, and then the encapsu-
lated drug can be released in a controlled manner. The
discrepancy of bioavailability of nanoparticles for molecular
imaging and for therapy necessitates the wise and careful
design of theranostic nanomaterials.

There have been reports of a handful of successful
theranostic nanoparticle agents in the literature. For exam-
ple, chemotherapeutic agents have been conjugated onto
gold nanoparticle surface for theranostic applications
(7–10); iron oxide nanoparticles with appropriate surface
modification have also demonstrated the potential for imag-
ing guided therapy (11–13). Traditionally effective chemo-
therapeutic agents could be conjugated onto iron oxide
nanoparticles for dual imaging and drug delivery purposes
(13–15); quantum dots with their inherent fluorescent emis-
sion ability have been extensively investigated for bioimaging
(16) and imaging guided therapies (17–19). Another widely
investigated inorganicmaterial, carbon nanotube, is also a good
candidate for concurrent optical imaging and drug/gene deliv-
ery (20–25). All of the above mentioned nanoscale platforms in
theranostics are inorganic/metallic nanoparticles. These
nanoparticles, unfortunately, would be concerned by the inev-
itable toxicity, immunogenicity, and slow excretion kinetics
from the body. Due to the excellent biocompatibility, biode-
gradability and structural versatility from natural to tailored

synthetic sources, polymeric materials have played key roles in
the development of drug formulations in the past, and more
recently polymeric materials have become a hot pursuit for
theranostic applications. Some representative polymeric mate-
rials as theranostic agents are shown in Fig. 1, and Table III
summarizes the recent advances of polymeric materials in
theranostic agent development.

POLYMER CONJUGATE COMPLEXES
FOR THERANOSTIC APPLICATION

Differring from conventional polymeric matrix encapsulated
drug delivery system, covalent conjugation of polymeric
macromolecules with drugs or functional imaging agents is
a new paradigm for drug and/or imaging agent delivery.
The polymer conjugates cover a wide range from bioactive
polymeric drugs (26,27), polymer-drug/imaging agent con-
jugates (28–32), to polymer-protein conjugates (33,34).
Herein, we define the polymer conjugate as the one that
the conjugated polymeric materials, either natural or syn-
thetic, are employed to improve the solubility of poorly water
soluble molecules, to enhance the bioavailability of drugs, or
to orient agents to specific tissues.

For anticancer therapy, Ringsdorf's view of idealized
polymer chemistry inspired the concept of targetable
polymer-drug conjugates for cancer therapy (35). Small mol-
ecule drugs are likely to result in random distribution in the
body, followed by notorious side-effects in cancer therapy,

Table I Summary of Commonly Used Molecular Imaging Modalities

Imaging
modality

Imaging agent Special
resolution

Target Advantages Disadvantages

PET 18F, 64Cu, 11C, 15O
labeled compounds

1–2 mm Molecular, physiological High sensitivity; imaging
biochemical process;
no depth limit;
quantative results

High cost; Radiation; Low
resolution

SPECT 99mTc, 111In chelates 1–2 mm Molecular, physiological High sensitivity; no depth
limit; relatively lower
cost; quantative results

Radiation; Low resolution

MRI Iron oxide; Gadolinium;
Manganese oxide;
19Fluorine labeled
compounds

10–100 μm Anatomical, physiological,
molecular

High resolution; No radiation;
no depth limit;
quantative results

High cost; limited to patients
with metallic implants

CT Iodine 50 μm Anatomical, physiological, High resolution; relatively
lower cost; no depth limit;
low radiation exposure;
quantative results

Need contrast agent for tissue
differentiation at soft organ
imaging; mainly used for
lung and bone

Ultrasound Microbubbles 50 μm Anatomical, physiological, High resolution; low cost,
ease of operation; no
radiation; quantative results

Limited imaging depth (cm)

Optical
imaging

Fluorochrome;
photoprotein

1–5 mm physiological, molecular High sensitivity; no
radiation; multi-channel
imaging

Not for clinical imaging, low
resolution, limited imaging
depth (<1 cm)
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while a suitable polymer-drug conjugate would prolong the
circulation time of the drug, and facilitate passive tumor
targeting through the leakiness of highly proliferating tumor
vasculature by enhanced permeability and retention (EPR)
effect (36). In addition, the polymer backbone of this conju-
gate can be tethered with targeting moieties, such as antibod-
ies, peptides, or small molecules, to realize site specific delivery
through receptor-mediated endocytosis pathways (37–41).
Figure 2 represents typical examples of commonly used
polymer-drug conjugates for therapeutic agent delivery.

Protein or Peptide Conjugate Complexes
for Theranostic Application

Proteins or peptides as naturally occurring polymeric bioma-
terials are good candidates as delivery vehicles. Abraxane®, a
paclitaxel-albumin conjugated nanoscale (130–150 nm) for-
mulation, has been used in clinic (42). It excelled the conven-
tional Cremophore EL/ethanol based formulation with re-
duced systemic toxicity and less drug administration frequen-
cy. Another widely used anticancer drug, doxorubicin, was
chemically conjugated with elastin-like polypeptide self-
assembly into nanoparticles in aqueous condition with en-
hanced plasma circulation time and efficient cellular uptake
(43). Similarly, the conjugation of doxorubicin with a novel
chimeric polypeptide could self-assemble into a nanoscale
delivery vehicle. The resulting polypeptide-doxorubicin con-
jugate had a four-fold higher maximum tolerated dose (MTD)
than the free doxirubicin, and induced nearly complete tumor
regression after a single dose administration (44). In addition,
the intrinsic fluorescence of doxorubicin makes this drug an
appropriate candidate as a theranostic agent for monitoring
the dynamic drug release progress in vitro and in vivo (45).

Polyglutamic acid (PGA) has also been applied for polymer-
drug conjugation. One of such conjugates is PGA-paclitaxel
(CT 2103, Xyotax) which is now under clinical evaluation.
In this conjugate, the paclitaxel was covalently linked with
PGA through the 2’-OH position to gain a very water-soluble
complex with high drug loading content (37% w/w) (46,47).

Fig. 1 Structural illustration of representative polymeric nanoparticles. (a)
polymeric conjugate complex; (b) polymeric nanosphere; (c) polymeric
micelle; (d) dendrimer.

Table II Examples of Polymeric Nanoparticles Used in Cancer Therapy or Imaging

Type of nanocarrier Polymeric material Drug Current development status Function References

Polymer-drug conjugate PGA Paclitaxel Phase III Cancer therapy (29,30)

PGA Camptothecin Phase I Cancer therapy (33–35)

PEG Camptothecin Phase II Cancer therapy (35)

Hyaluronic acid Paclitaxel In vivo Cancer therapy (49)

HPMA Platinum Phase I/II Cancer therapy (58)

HPMA Camptothecin Phase I Cancer therapy (55)

HPMA TNP-470 Phase I Cancer therapy (68)

Dextran NIR dye/radio labeling In vivo Cancer therapy and imaging (60)

Polymer nanosphere PLGA Docetaxel In vivo Cancer therapy (87–90)

PLGA NIR dye and iron oxide In vivo Cancer imaging (102)

Polymeric micelles PLA-PEG Paclitaxel Phase I Cancer therapy (118)

PCL-PEG Docetaxel In vivo Cancer therapy (119)

PLA-PEG TNP-470 In vivo Cancer therapy (121)

PAA-PEG Platinum Phase I Cancer therapy (124)

Polymeric dendrimers PAMAM Paclitaxel/fluorophore In vivo Cancer therapy and imaging (142)

Polylysine GO-DOTA In vivo Cancer imaging (166)

PAMAM Gold nanoparticle In vivo Cancer imaging (172)

HPMA N-(2-hydroxypropyl)methacrylamide; PGA polyglutamic acid; PLA-PEG poly(lactic acid)-poly(ethylene glycol); PLGA-PEG poly(lactic-co-glycolic acid)-
poly(ethylene glycol); PAA-PEG poly(aspartic acid)-poly(ethylene glycol); PAMAM poly(amido amine)
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Paclitaxel can be released from the conjugate upon hydrolysis
of the ester bond, followed by further polymeric backbone
degradation upon endocytosis by lysosomal cathepsin B catal-
ysis. The increased water solubility and decreased normal
tissue exposure led to improved safety profile of the conjugate
over the free drug (47–49). Another widely used anticancer
drug, camptothecin, was conjugated to PGA through a Gly
linker for improved water solubility and higher efficacy
(50,51). A recent review has systematically summarized the
chemistry, physicochemical properties, and therapeutic appli-
cations of PGA-based drug conjugate complexes (52). For
molecular imaging, the biodegradability of PGA makes it a
good candidate for conjugation with gadolinium (Gd) chelate
as a macromolecular MRI contrast agent with efficient clear-
ance from the body (53,54). Upon modification with targeting
ligand, cyclic Arg-Gly-Asp-D-Phe-Lys [c(RGDfK)] peptide,
PGA-Gd conjugate could detect angiogenic biomarker
integrin αvβ3 with T1-weighted MRI (55). For theranostic
application, Li and co-workers reported the MR imaging of
therapy induced tumor necrosis by consecutive administration
of PGA-paclitaxel and PGA-Gd conjugates (56). Lu’s group
reported the contrast enhanced-MR imaging the efficacy of
photodynamic therapy (PDT) on xenograft tumors by bifunc-
tional PGA-photosentisizer/Gd double conjugate (57). It was
found that the PGA conjugate preferentially accumulated in
the tumor region due to the hyperpermeability of the tumor
vasculature, resulting in enhanced tumor contrast for accurate
localization and imaging by contrast enhanced (CE)-MRI
(58). Other commonly available peptides include polylysine,
poly(aspartic acid) (59,60) (Fig. 3a) and various chimeric poly-
peptides (17,44,61–63) have also been attempted for conjuga-
tion with either drugs or imaging agents for theranostic
applications.

Natural Polymeric Conjugate Complexes
for Theranostic Applications

In addition to proteins and peptides, naturally occurring
polymers, such as polysaccharides, have also been applied
to develop drug or imaging agent delivery systems.

Hyaluronic acid or hyaluronate (HA) is a glycosaminoglycan
(~106 Da) that exists in living system as a major component of
the extracellular matrix (64). Its receptor, CD44, has been
found to be overexpressed on many cancer cells (65). It is,
therefore, a good polymeric material for disease targeted deliv-
ery of drugs or contrast agents (66). A novel HA solubilization
method was used to conjugate paclitaxel to HA backbone with
the addition of poly(ethylene glycol) (PEG). The as-prepared
HA-paclitaxel conjugate complex self-assembled into micelles
that readily released the entire paclitaxel under acidic condi-
tion. The HA-paclitaxel conjugate presented high cytotoxicity
to CD44-overexpressing cancerous cells over CD44 deficient
cells, suggesting that this HA-paclitaxel conjugate could be used
as a tumor targeting macromolecular therapeutic agent (67). In
another report, HA was covalently linked with methotrexate
(MTX) by an enzyme cleavable spacer for the treatment of
osteoarthritis with reduced risk of side-effects of MTX (68). HA
was also conjugated with exendin-4 for type-2 diabetes treat-
ment (69) or linked with photosentisizer for PDT of cancer (70).
For HA based drug delivery, a recent review has summarized
novel HA derivatives and the state-of-the-art of HA-based
therapeutic delivery systems (71). As an effective molecular
imaging agent, hydrophobically modified HA conjugated with
near-infrared (NIR) dye has shown preferred tumor accumula-
tion and enhanced imaging signal in animals (72).

Other natural polysaccharides, including chitosan, dex-
tran, alginate, have also been well studied for conjugation

Table III Representatives of Polymeric Theranostic Nanoparticles

Type Polymeric material Therapeutic agent Imaging agent Indication Particle size scale

Conjugate
complex

PGA Mesochlorin e-6
(photosentisizer)

Gd-DOTA MRI imaging and photodynamic
therapy

~100 nm

HPMA Doxorubicin Iodine-123 Gamma scintigraphy and
chemotherapy

N.A.

HPMA Avastin® Gadolinium Biphasic administration
therapeutic and imaging agents

N.A.

Nanosphere PLGA Doxorubicin Iron oxide Nanoparticle Concurrent drug delivery and
MRI imaging

300–400 nm

PGA Doxorubicin Polyfluorene containing
oxadiazole
(a fluorescent polymer)

Fluorescent imaging and drug delivery >200 nm

Micelle PGA-PEG Cisplatin Gd-DTPA Drug delivery and MRI imaging <100 nm

PLA-PEG Doxorubicin Iron oxide Drug delivery and MRI imaging ~150 nm

Dendrimer PAMAM Fluorescein
isothiocyanate

Paclitaxel Fluorescent imaging and Drug
delivery

N.A.
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with drugs and/or imaging agents. It has been recently
reported that galabiose-chitosan conjugate could be used
for anti-S. Suis infection (73). In another research, photosen-
sitive drugs and pH-responsive functional groups were added
onto the backbone of glycol chitosan, followed by self-
assembling in aqueous environment for anti-cancer therapy
(74) (Fig. 3b). As an anti-inflammatory agent, sialyl Lewis
X-chitosan conjugate was synthesized, which showed
high binding affinity for E-selectin and potent inhibitory
effect on the binding of E-selectin with SLe(x)-BSA (75).
Low molecular weight hydroxyethyl chitosan (LMWHC)
was conjugated to prednisolone (Pre) as effective potential
drug candidate for the treatment of chronic renal disease

(76). For the treatment of ulcerative colitis, an oral drug was
fabricated based on the conjugation of budesonide with dex-
tran as a polymeric prodrug. The in vivo result showed that
conjugation of budesonide with 70 KDa dextran could de-
crease the macroscopic and microscopic scores of induced
colitis compared with mesalasine and budesonide suspensions
(77). As an imaging agent, the galactose modified dextran
was coupled with Cy5.5 dye for NIR fluorescence im-
aging and radiolabeled with 99mTc for SPECT imaging
(78). Dextran itself has also been labeled with 99mTc for
angiocardiographical and/or lymphoscintigraphical im-
aging (79). Similarly, another polysaccharide, alginate, was
tethered with drugs for anticancer therapy (80,81). However,

Fig. 2 Polymer–anticancer drug conjugates. Each panel shows both the detailed chemical structure and a cartoon of the general structure. The polymer
backbone is shown in black, linker region in green, drug in red and additional components (for example, a targeting residue) in blue. (a) Two examples of more
‘simple’ polymer–drug conjugates containing doxorubicin (left) and paclitaxel (right) that have progressed to the clinic. (b) A multivalent receptor targeted
conjugate containing galactosamine (light blue) to promote liver targeting. (c) Polymer combination therapy containing the aromatase inhibitor
aminogluthethimide (red) and doxorubicin (blue) (adapted with permission from ref. (39)).
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due to the naturally high molecular weight of alginate, the
application as a carrier for drugs or imaging agents is limited.
In this regard, gamma irradiation has been used to reduce the
molecular weight in addition to periodate oxidation treatment
(82). A recent review has illustrated these polysaccharide-
drug/imaging agent conjugate complexes for theranostic
applications (83).

Synthetic Polymer Conjugate Complexes
for Theranostic Applications

Despite the fact that naturally occurring versatile macromol-
ecules can serve as delivery vehicles for theranostic applica-
tions, the inherent vulnerable characters, such as ease of
hydrolysis or proteolysis, fast degradation of natural mate-
rials and their relatively simple structures necessitate the

design of more sophisticated biocompatible materials for
biomedical applications. Therefore, synthetic polymers play
vital roles in the development of theranostic agents.

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer
has been extensively explored for numerous drug ormolecular
imaging agent delivery applications. HPMA is non-toxic, non-
immunogenic, and stable in systemic circulation (71). HPMA
drug/imaging agent conjugates have been studied for several
decades. Some of the HPMA conjugates have been at differ-
ent phases of clinical trials. Phase I evaluation of HPMA-Gly-
Phe-Leu-Gly-doxorubicin (PK1) was initiated in 1994. The
peptide linker is cleavable by lysosomal enzyme, cathepsin B,
upon cellular uptake, while it is stable in the blood stream. It
was reported to have four to five-fold higher maximum toler-
ated dose (MTD) than that of the free drug. By conjugating
galactoamine to HPMA-peptide-doxorubicin conjugate

Fig. 3 Examples of polymeric conjugate complexes as theranostic agents. (a) Schematic of the application of quantum dot (QD)-polypeptide assemblies as
dual imaging and targeted drug-delivery agents (adapted with permission from ref. (59)); (b) Schematic illustration of a proposed polysaccharide/drug
conjugate. At high pH values, the conjugate complex undergoes autoquenching, and upon reaching the more acidic surface of the tumor cell protonation
occurs and singlet oxygen is generated, thereby destroying the cell (adapted with permission from ref. (74)); (c) Synthesis and solid-state emission of
BF2dbm(I)PLA under air (I) and N2 (II) conditions (adapted with permission from ref. (99)).
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backbone, the conjugate complex could promote multivalent
targeting of hepatocyte asialoglycoprotein receptor (ASGP-R)
for the treatment of primary liver cancer (74). HPMA has also
been conjugated with other conventional anticancer drugs,
such as paclitaxel (PNU166945) (75) and camptothecin
(MAG-CPT) (73) for cancer therapy. Unfortunately, clinical
trials of these two types of HPMA drug conjugates showed
negative results. However, HPMA-platinate conjugate
(AP5280) demonstrated clinical success with reduced plati-
num related toxicity. An angiogenesis inhibitor TNP-470
was also conjugated with HPMA (Caplostatin) for anti-
angiogenic treatment of cancer (84). It was found to selectively
accumulate in the tumor vasculature, resulting in decreased
tumor growth in two different cancer models. Interestingly,
such HPMA-TNP-470 conjugate formulation does not cross
the blood–brain barrier (BBB), thus overcomes the neurotox-
icity of TNP-470 (84,85). As bone metastasis is highly associ-
ated with several types of solid cancers, such as breast cancer
or prostate cancer, another novel bone-targeting HPMA che-
motherapeutic drug conjugate complex has been constructed
to prevent bone metastasis (86).

In molecular imaging, gadolinium-labeled HPMA conju-
gate has shown prolonged blood circulation time, hence, holds
great potential for tumor diagnosis and monitoring (87). In
addition, HPMA could be conjugated with gadolinium chela-
tor, followed by further modification with c(RGDfK) peptide
for integrin αvβ3 expressed on tumors or its microvasculature
(88). Results demonstrated the potential of this conjugate as an
effective targetable MRI contrast agent for tumor imaging and
therapy monitoring. In another research, HPMA was conju-
gated with RGD4C, which was further radiolabeled with
99mTc for scintigraphic imaging. The HPMA-RGD4C conju-
gate showed prolonged tumor retention over 72 h and reason-
ably efficient clearance from normal organs and tissues (89).
Being a theranostic agent, HPMA-doxorubicin conjugate was
additionally introduced a small amount of methacryloyl
tyrosinamide on the backbone for 123I- or 125I-labeling. This
conjugate complex enabled tracing of time-dependent
biodistribution of drug conjugate from two administration
routes (intraperitoneal and intravenous) (90). To monitor the
treatment efficacy of antiangiogenic drugs, a 40 k Da
gadolinium-labeled HPMA copolymer (GDCC-40) was ad-
ministered prior to the injection of VEGF-binding antibody
Avastin®. This biphasic treatment was visualized by dynamic
contrast enhanced (DCE)-MRI with the help of the macromo-
lecular contrast agent HPMA-conjugate (91). A recent review
has summarized the applications of HPMA in molecular im-
aging (31).

Both poly(lactic co-glycolic acid) (PLGA) and poly(lactic
acid) (PLA) were traditionally used for drug delivery as the
polyester matrix, where drugs were physically encapsulated.
However, it was found that the burst release effect of encap-
sulated drug and low loading efficiency of hydrophilic drugs

in the polyester matrices hindered the development of these
materials as delivery vehicles for drugs and molecular imag-
ing agents (92). To overcome such limitation, it has been
proposed that direct conjugation of typical drug molecules or
imaging agents onto PLGA or PLA polymers could reduce
the burst release effect and enhance loading efficiency of
hydrophilic drugs. In this regard, it was reported that the
conjugation of doxorubicin to PLGA was achievable, and
nanoparticle formulation resulted in sustained drug release
with enhanced doxorubicin loading efficiency (93). It should
be noted that the conjugated doxorubicin in the nanoparticle
formulation showed less cytotoxicity than that of free doxo-
rubicin to cancer cells. However, it is believed that long-term
exposure of such doxorubicin-PLGA conjugate to cancer
cells would present similar, if not better, therapeutic efficacy
with reduced side effects. To improve the circulation time
and active targeting ability of such doxorubicin-PLGA con-
jugate nanoparticles, the nanoparticle surface was further
modified with poly(ethylene glycol) (PEG) and c(RGDfK)
peptide to selectively target nanoparticles to integrin
overexpressing cancer cells (94). Another research showed
an acid-responsive drug delivery system by conjugating PLA-
PEG with cisplatin derivatives through hydrazine bond,
followed by nanoprecipitation method to form sub-100 nm
nanoparticles. These nanoparticles could potentially mini-
mize the drug loss during circulation in the blood, where the
pH value is neutral, and trigger rapid intracellular drug
release upon endocytosis by target cells (95). Alendronate
(AE), a drug commonly used for the treatment of osteoporo-
sis, was conjugated with PLGA via amide bond. This AE-
PLGA conjugate complex demonstrated enhanced bone
seeking ability than the naïve PLGA, had an acceptable
degree of blood compatibility, and was not cytotoxic. There-
fore, it is suitable for intravenous administration for osteo-
porosis treatment (96).

To deliver nanoparticles into the cytoplasm, PLGA was
either conjugated with fluorescein or biotin molecule on the
segment distal end, which could be further labeled for molec-
ular imaging purpose (97). In one report, 99mTc-labeled
PLGA nanoparticles enabled imaging of sentinel lymph nodes
in Wistar rats. The as-developed 99mTc-PLGA nanoparticles
provided a proof-of-concept for PLGA-based system as an
advantageous alternative to currently used sentinel lymph
node detection tools (78). Similarly, PLGA nanoparticles
could be surface conjugated with chelating ligands,
diethylenetriaminepentaacetic acid (DTPA) or 1, 4, 7, 10-
tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA),
for Gd3+ labeling and T1-weighted MRI measurement (79).
When a boron dye was conjugated with PLA via ring-opening
polymerization method, the fluorescent emission from boron
dye was adjustable through the molecular weight of the con-
jugated PLA segment (98). This dye conjugate complex nano-
particle was also a dual-emissive nanoparticle, emitting both
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fluorescence and phosphorescence in a single system. In addi-
tion, the boron dye was found to be highly sensitive to oxygen
by heavy-atom exchange. All the characters enabled the ap-
plication of such nanoparticle formula for tumor hypoxia
detection via fluorescence and phosphorescence imaging (99)
(Fig. 3c).

Summary

The conjugation of polymeric materials with drugs or con-
trast agents has presented unprecedented advantages by
altering drug delivery mechanism to diseased cells,
prolonging the blood circulation time of the drug molecules,
accelerating the clearance rate of imaging agents from body
upon the completion of imaging process, etc. Many of these
polymer conjugate complexes are currently being bested in
human, highlighting the potential of polymer-drug or
polymer-imaging agent conjugates for modern biomedical
diagnosis and therapy. However, we should also bear in
mind some issues related to the conjugation. For example,
the coupling will change the chemical structure of drug
molecules, often resulting in compromised therapeutic effi-
cacy. In addition, the conjugation of imaging agents to poly-
mers may prolong the circulation time, leading to relatively
high background and suboptimal contrast. Therefore, fur-
ther studies are needed to minimize the impact of chemical
modification to the potency of drug molecules and strike the
balance between the requirement of controlled release of
therapeutics molecules and required rapid clearance of the
contrast agents after the imaging studies are accomplished,
in order to realize the full theranostic potential of polymer
conjuagates.

POLYMERIC NANOSPHERES FOR THERANOSTIC
APPLICATIONS

Nanospheres are defined as colloidal solid particles consisting
of macromolecular substances with particle size ranging from
10 to 1,000 nm with drug of interest either adsorbed on the
particle surface or sequestered in the particle matrix. Poly-
meric nanoparticles can be made from synthetic polymers,
including PLA and PLGA, polycarbolactone (PCL), polycar-
bonate, or from natural polymers such as chitosan and colla-
gen, and may be used to encapsulate drugs or imaging agents
without additional chemical modification. A wide variety of
polymeric nanoparticle-generating technologies exist, and
these technologies have been comprehensively summarized
in the literature (100,101). Upon encapsulation into nanopar-
ticle formulations, drugs present improved treatment efficacy,
more efficient cellular internalization, prolonged circulation
time in vivo, reduced degradation before reaching the targeted
cells and sustained drug release as compared to the free drugs.

Alternatively, imaging agents encapsulated in polymeric
nanospheres could favorably accumulate at the diseased site
for enhanced contrast, and controllable clearance rate from
the body.

Polymeric Nanospheres for Therapy

In 1980, Couvreur et al. reported one of the earliest examples
of polymeric drug delivery system for cancer therapy, where
anticancer drugs were adsorbed onto polyalkylcyanoacrylate
nanosphere (102). They revealed the release mechanism of
the drug from the polymer matrix, and studied tissue distri-
bution and drug efficacy in a tumor xenograft model. A
biodegradable polymeric nanosphere employed to encapsu-
late a photosensitizer for cancer therapy was recently report-
ed by Weissleder and co-workers (103). They formulated the
photosensitizer, meso-tetraphenylporpholactol, with PLGA
into a nanosphere. They reported that the as-prepared
nanospheres were stable and non-toxic upon systemic ad-
ministration. After cellular uptake, the photosensitizer was
readily released from the nanosphere matrix and became
highly phototoxic. Irradiation with visible light led to cell-
specific killing of several cancer cell lines. In vivo experiments
showed complete eradication of tumor burden in animal
models. They envisioned that this photosensitizer loaded
polymeric nanospheres with selective phototoxicity may
have widespread applications in cancer therapy (103).

Polymeric nanospheres are also widely used as alternative
vehicles to deliver conventional anticancer drugs, such as pac-
litaxel, camptothecin, daunorubicin, doxorubicin, and metho-
trexate, etc. For example, it is well-known that the conventional
paclitaxel formulation is based on Cremophor EL/ethanol
formulation. The severe side effects of this formulation are of
serious concern. To employ polymeric nanosphere for pacli-
taxel delivery, there have been a good number of reports on
PLGA or other biodegradable biomaterial nanosphere-based
formulations (104–107). Similarly, other hydrophobic antican-
cer drugs have also been encapsulated into polymeric
nanospheres for cancer therapy. The as-prepared drug loaded
nanospheres can be surface-modified with different ligands for
active targeting purpose. It was reported that wheat germ
agglutinin (WGA) modified nanosphere could recognize DU-
145 prostate cancer cells, which overexpress sialic acid and N-
acetylglucosamine on the cell surface (108). WGA was also
used to decorate PLGA nanosphere for specific chemothera-
peutic drug delivery to Caco-2 colon cancer cells (109). Vari-
ous biodegradable polymeric materials have also been synthe-
sized to meet the versatile functional requirement in the fast
growing area of drug delivery. One such example is poly(β-
amino ester) (PAE) which was used to formulate hydrophobic
drugs into nanosphere with pH-responsive feature (110).

As polymeric nanospheres bear high drug loading capac-
ity by the polymeric matrix, they also allow co-delivery of
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drug cocktails. In cancer therapy, it has been discovered that
multiple drug resistance (MDR) proteins in many types of
cancers hinder the therapeutic efficacy of anticancer drugs.
Thus, specific blockage of MDR function via either MDR
gene silencing by siRNA or MDR inhibitors was believed to
enhance the anticancer treatment effects. It was demonstrat-
ed that polymeric nanosphere co-loaded MDR-1 silencing
siRNA and paclitaxel had superior therapeutic effects on
refractory tumors than that of the individual agent (siRNA
or paclitaxel) in the formulation (111). The combined deliv-
ery of apoptotic signaling molecule C-6 ceramide and pacli-
taxel in polymeric nanosphere could also reverse the drug
efflux from MDR cancer cells for enhanced chemotherapy
effect (112). For antiangiogenic therapy, it has been proposed
that the combined delivery of drugs for antiangiogenesis and
anti-cancer purposes could present significant therapeutic ef-
fects for malignant cancer types (113). In polymeric
nanospheres, the antiangiogenic drug, combretastatin A4 and
the anti-cancer agent, paclitaxel, were co-encapsulated with
nanosphere surface modified with c(RGDfK) (37). The
targeted dual drug-loaded nanosphere achieved significant
tumor growth suppression in vivo compared to the control.
Histological results revealed that the targeted dual drug
nanospheres led to dramatic tumor vasculature disruption,
significant cancer cell apoptosis and cell proliferation inhibition
in a tumor xemograft model.

Polymeric Nanospheres for Molecular Imaging

In addition to drug loading and delivery, polymeric
nanoparticles can also serve as reservoirs to load different
types of molecular imaging agents, such as inorganic
nanoparticles and fluorophores in the matrices.

For fluorescence-based molecular imaging, semiconduc-
tor quantum dots (QDs) (16,18,113–115) hold great promise
as the new generation fluorescent probes to image biological
processes. Nevertheless, the inefficient delivery of QDs into
live cell cytoplasm is the major limitation that hinders the
progress of live cell monitoring and tracking at the subcellu-
lar level. It was recently reported that the biodegradable
polymeric nanoparticle encapsulated, antibody modified
QDs could be efficiently internalized into live cell cytoplasm,
followed by releasing QD conjugates into the cytosol (116).
This approach facilitates multiplexed labeling of subcellular
structures inside live cells without the requirement of cell
fixation or membrane permeation. As compared to conven-
tional intracellular delivery techniques, this approach allows
highly efficient cytoplasmic delivery of QDs with minimal
toxicity to the cell. In a similar manner, a cationic core-shell
colloid was fabricated to sequester QDs in the matrix for
efficient live cell cytosol delivery, followed by subcellular
labeling (117). In another recent research, a mini-emulsion
technique was applied to prepare sub-100 nm polymeric

nanoparticles incorporating a fluorescent dye and a photo-
chromic spiropyran derivative. The resulting nanoparticles
showed the spectral properties of both the fluorescent dye
and spiropyran, thus, UV and visible light can be applied to
modulate the fluorescence emission of fluorescent dye in
nanoparticles, resulting in photoreversible fluorescent emis-
sion from the polymeric nanoparticle (118).

Polymeric nanoparticles are also widely used for magnetic
resonance imaging (MRI) (13,119). The MRI contrast agent
such as iron oxide nanoparticles, could be entrapped in the
solid polymeric matrix. Necessary nanoparticle modification
may be needed for tissue specific delivery of such agents (13).
It was reported that the core-shell structure of glycol chitosan
surface modified polymeric nanoparticle in which iron oxide
was loaded could be used for selective liver cancer imaging
after intravenous administration (120). Magnetic iron-cobalt
(FeCo) nanoparticles were also encapsulated into biodegrad-
able PLGA nanoparticle for enhanced liver tumor
bioimaging application (121). Since some types of polymeric
materials are inherently semiconducting materials, the poly-
meric materials could be directly used as imaging agent upon
formation of nanoparticles. In line with this concept, there is
a recent report regarding the semiconducting polymer dots
as ultrabright fluorescent probes for biological imaging (122).
These polymeric dots exhibit several important characteris-
tics for experimentally demanding in vitro and in vivo fluores-
cence studies, such as their high brightness, fast emission
rate, excellent photostability, nonblinking, and nontoxic fea-
tures. They can effectively and specifically label cellular
targets, such as cell surface markers in human breast cancer
cells, without much nonspecific binding. These ultrabright
nanoparticles present a new opportunity to apply versatile
semiconducting polymers to various fluorescence measure-
ments in biology and biomedicine (122). Using free radical
polymerization method, a series of multivalent, functional
polymer nanoparticles with diagnostic/imaging units and
targeting ligands for molecular targeting were synthesized
(123).

For multi-modal molecular imaging, NIR dye and fatty
acid surface coated iron oxide were co-encapsulated into
PLGA nanoparticles. The imaging agent embedded
nanoparticles showed high accumulation at the tumor site
(124). Nanoemulsion technique was also employed to pre-
pare iron oxide nanoparticles with surface modification of a
NIR fluorophore allowing both optical and MR imaging
(125). 99mTc-labeled iron oxide encapsulated in organic
polymer was also reported for SPECT/MR imaging (126).
Lee et al. developed an iron oxide nanoparticle MR contrast
agent coated in poly(aspartic acid) with particle size of 45 nm
coupled with RGD peptide for integrin αvβ3 targeting and a
chelator for 64Cu labeling and PET imaging (127). Xie et al.
prepared a human serum albumin (HSA) coated iron oxide
agent (HSA-IONP) with triple-modality imaging capacity

1366 Wang, Niu and Chen



(128). In this nanosystem, fluorescent dye, Cy5.5, and posi-
tron emitting radionuclide, 64Cu, were coupled onto the
surface of iron oxide which was already coated with dopa-
mine. In vitro and in vivo studies showed relatively long circu-
lation half-life, massive tumor accumulation, efficient extrav-
asation, low macrophage uptake of the HSA-IONP particles.
Different types of polymeric nanoparticles have also been
developed for other combination of multimodality imaging
studies such as optical/MR (129–132), PET/CT (133), and
MR/CT (134) (Fig. 4).

Polymeric Nanospheres for Imaging Guided Therapy

In addition to the applications for combined drug delivery
and multi-modal molecular imaging, polymeric nanospheres
could also be used as theranostic agents for simultaneous
molecular imaging and therapeutic drug delivery, due to
their high loading capacity and efficiency.

Gold nanoparticles with surface plasmon resonance (SPR)
in the NIR region are of great interest for imaging and
therapy. Unfortunately, gold nanoparticles with NIR absor-
bance are typically larger than 50 nm, above the threshold
size of 5–6 nm required for efficient renal clearance. To solve
the problem, researchers have prepared biodegradable
polymer/gold nanosphere complexes, in which individual
gold nanoparticle with 4 nm in size were linked by biode-
gradable polymers into nanoclusters with NIR absorption
capacity. On the other hand, the nanosphere could also act
as a NIR activatable nanosphere for photothermotherapy
(135). Serving as a reservoir matrix, polymeric material was
used to co-encapsulate iron oxide nanoparticles for MR
imaging and anticancer drug, doxorubicin, for real-time

tumor imaging and therapy as a theranostic agent. The
surface of the resulting theranostic nanosphere was further
conjugated with anti-HER2 antibody for active targeting to
specific cancer cells (136). In addition to incorporating im-
aging agents and bioactive drugs in the polymeric
nanosphere matrix, it has been revealed that imaging agents
could be embedded in a polymer core followed by surface
deposition of another biodegradable polymeric layer con-
taining cytotoxic drugs. This unique composition structure
allows dynamic monitoring of drug release and therapeutic
response concurrently (137). In addition to the encapsulation
method, a polymeric nanosphere conjugate was prepared by
electrostatic assembly of cationic fluorophore conjugated
polymer and anionic poly(glutamic acid) (PGA) coupled with
doxorubicin. In this system, the cationic polymer fluores-
cence was highly quenched by doxorubicin through electron
transfer mechanism. Upon cellular uptake of the complex
nanosphere, the PGA is hydrolyzed to release the drug,
inducing the activation of polymer fluorescence (138). This
enables dynamic imaging of drug release process with fluo-
rescence microscopy, and possible in vivo fluorescence molec-
ular imaging at the diseased site.

Summary

Polymeric nanospheres were traditionally employed as de-
livery vehicles for hydrophobic drug delivery. Unfortunately,
the therapeutic efficacy of these drug delivery systems could
hardly be evaluated without imaging the delivery process.
With the fast development of modern molecular imaging
techniques, various polymer nanospheres have been
engineered for molecular imaging purposes based on their

Fig. 4 (a) Cy5.5-CLIO nanoparticle as a preoperative MRI contrast agent (A–B) and NIR fluorescent imaging agent for tumor delineation (C–E) (adapted
with permission from ref. (129)); (b) Micro-PET/CT images of nude mice bearing subcutaneous U87 glioma xenografts at different time points after i.v.
injection of PEG-[64Cu]CuS NPs (adapted with permission from ref. (133)).

Theranostic Polymers 1367



advantageous biocompatibility, biodegradability, longer cir-
culation time, fast and controllable clearance rate, etc. For
theranostic applications, polymeric nanospheres also dem-
onstrated their superiority of simultaneous loading of imag-
ing agents and therapeutic drugs. Nevertheless, an ideal
polymeric nanosphere-based theranostic agent requires
efficient and sustained drug release at target site and rapid
contrast enhancement followed by effective clearance after
imaging. The widely used polymeric nanospheres, such as
PLGA and PLA nanoparticles, may not meet these criteria.
Thus, functionalization of traditional polymeric materials
or synthesizing novel functional polymers specifically for
theranostic agent delivery may point the future direction
of polymeric nanosphere development in theranostic
applications.

POLYMERIC MICELLES FOR THERANOSTIC
APPLICATION

Polymeric micellar nanoparticles are composed of a variety
of amphiphilic materials that can self-assemble into nano-
scale particles upon interaction of hydrophobic segments
between amphiphilic polymers and the hydrophilic portions
to form a corona with or without functional groups at the
distal end of polymeric chains. Thus, hydrophobic drugs or
contrast agents can be entrapped into the micellar core
through hydrophobic interaction or by covalent bonding
with the polymer block comprising the hydrophobic domain.
In contrast, charged hydrophilic macromolecules including
peptides, proteins, and nucleic acids, can be loaded into the
micellar core by using oppositely charged blocks to form polyion
complexes through electrostatic interactions and charge neutral-
ization. As corona-forming segments, several hydrophilic and
non-ionic polymers, such as poly(ethylene glycol) (PEG), poly(N-
vinyl pyrrolidone) (PVP), poly(N-isopropyl acrylamide)
(PNIPAM), and poly(hydroxypropyl methacrylamide)
(PHPMA), have been reported. Among them, PEG is the
most commonly used hydrophilic block that confers micelles
with biocompatibility, stealth-like properties, and site for
functionalization (139).

Due to the ease of formulation, good stability, capacity of
encapsulating hydrophobic molecules, polymeric micelles are
widely investigated as viable drug and/or imaging agent de-
livery systems (140). For cancer therapy, Genexol-PM™, a
formulation of paclitaxel encapsulated in a polymeric micelle,
is currently under clinical evaluation. Several clinical trials
have validated its safety and efficacy in metastatic breast
cancer, non-small-cell lung cancer, and other solid tumor
types (141). Many other biodegradable and biocompatible
polymeric nanoparticles have also been synthesized to develop
paclitaxel based micellar formulations. For instance, an am-
phiphilic poly(ethylene glycol)-co-poly(epsilon-caprolactone)

(PEG-PCL) co-polymer was synthesized to load paclitaxel
for controlled drug delivery (142). Another biodegradable
poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol
1000 succinate (PLGA-TPGS) was also prepared by ring-
opening polymerization method using TPGS as initiator.
This co-polymer could load paclitaxel in high efficiency for
long-term controlled anticancer drug delivery (143). For
antiangiogenic and anticancer activities, a PLA-PEG based,
TNP-470 loaded oral formulation (Lodamin) was developed.
This oral drug formulation could be absorbed by the intestine
and selectively accumulates in tumors. It was shown that
Lodamin is a nontoxic antiangiogenic oral drug that can be
chronically administered for primary tumor treatment or
prevention of metastasis (144) (Fig. 5a). By using a chitosan
derivative modified with long alkyl chains on the backbone, an
amphiphilic N-octyl-O-glycol chitosan micelle loaded with
paclitaxel was prepared as a promising drug carrier for inject-
able paclitaxel administration (145). In a similar manner,
another natural macromolecule, hyaluronic acid (HA), was
conjugated with hydrophobic oligomers on the backbone.
This hydrophobic modification resulted an amphiphilic HA
polymer that could load paclitaxel via polymer self-assembling
progress in aqueous phase (146).

Metal-polymer chelating complexes have also been ex-
plored as micelle-based drug delivery platforms. The com-
monly used chemotherapeutic drugs, platinum complexes,
such as cisplatin or carboplatin were incorporated into che-
lating polymers with amines as nitrogen donors and
carboxylate/hydroxyl groups as oxygen donors through the
ligand exchange of one or more ligand groups at the metal
center. Polymeric micelles such as PEG–poly(aspartic acid)
(PEG–PASP) and poly(glutamic acid) (PEG–PGA) block co-
polymers have been extensively examined to incorporate
platinum by complexation through ligand exchange between
carboxyl groups in the poly(amino acid) block with chlorine
or oxygen contained in the small molecule platinum com-
plexes (147,148). The incorporated platinum complexes fur-
ther enhanced hydrophobicity of the blocks and also cross-
linked the blocks, leading to the formation of dense core
within micelles.

To effectively deliver another wide-spectrum anticancer
drug, doxorubicin, a charge-reversible micelle composed of
poly(epsilon-carbolactone)-poly(ethyleneimine) (PCL-PEI)
was prepared. The amine groups on PEI segment were
converted into amides so that the entire drug loaded micelles
were negatively charged at neutral pH but became positively
charged at pH<6 for efficient endosomal/lysosomal escape
(149). As for pH responsive drug delivery, it was reported
that a doxorubicin encapsulated nanogel consisting of a
hydrophobic copolymer core and two layers of hydrophilic
shells could infect tumor cells in a receptor-dependent man-
ner, kill the cells, and migrate to neighboring cells like virus
particles (150).

1368 Wang, Niu and Chen



Micelles composed of poly(ethylene oxide) and poly(2-
tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in
aqueous solution could be disrupted by high-frequency ul-
trasound (1.1 MHz). This micelle could be utilized for envi-
ronment triggered drug delivery (151). Thermoresponsive
polymeric micelles provide an alternative for efficient anti-
cancer drug delivery and alleviate possible toxicity to healthy
cells (152). Other stimuli responsive micelles for drug deliv-
ery purposes have been well summarized in the literature
(153–155), interested readers are recommended to refer to
those reviews for more details.

In addition to therapeutic applications, contrast-loaded
micelles can also be used for visualizing numerous organs,
tissues and diseased sites. It was reported that a pH-
responsive polymeric micelle encapsulating iron oxide
nanoparticles was used as an acid-targeting MRI contrast
agent for pathologic diagnosis. This MRI probe remained in
a micellar state at neutral pH, while it could be disrupted in
acidic pathological areas, followed by exposure of iron oxide

contrast agent for MR imaging (156). In another research,
MRI contrast agent, Gd-DOTA, was conjugated with the
amine groups of poly(ethylene glycol)-polylysine (PEG-PLL)
co-polymer, followed by addition of polyanion as counterion
to prepare polyion complex micelles. In an animal study, the
resulting micelles accumulated in tumor tissues, and MRI
study showed that T1 image of axial slice of tumor area was
significantly enhanced at 24 h after the injection (157).

Importantly, polymeric micelles make it possible for
theranostic application due to their high loading efficiency,
structural flexibility, and ease of preparation. Kataoka and
co-workers have reported the polymeric micelle vehicle in-
corporating gadolinium-based MRI contrast agents and
platinum (Pt) anticancer drugs through reversible metal-
chelation interaction (158). Similarly, Gao’s group reported
another theranostic micelle system in which MRI contrast
agent, iron oxide, and anticancer drug, doxorubicin, were
co-encapsulated into a biodegradable micelle composed of
PEG-PLA co-polymer. To orient this theranostic micelle

Fig. 5 Representative polymeric micelles as theranostic agents. (a) Upper channel: scheme of the conjugation reaction between TNP-470 and modified
mPEG-PLA.; middle channel: TEM pictures of micelles at day 0 and day 7; bottom left: efficient HUVEC uptake of fluorophore labeled micelles; bottom right:
corneal micropocket assay for the efficacy of that conjugate complex (Lodamin) to neovasculatures (adapted with permission from ref. (144)); (b) Upper
channel: schematic illustration for the fabrication of magneto-polymeric nanohybrids (MMPNs); middle channel: TEM pictures of a) MnFe2O4 and b) Fe3O4

and MMPNs containing c) MnFe2O4 or d) Fe3O4 nanocrystals; bottom channel: MR images and their color maps (tumor region) of cancer-targeting events of
HER-MMPNs (I–IV) and IRR-MMPNs (V–VIII) in NIH3T6 cells implanted in mice at various time intervals: (I, V) preinjection; (II, VI) immediately; (III, VII) 1 h;
(IV,VIII) 12 h after injection of the MMPNs (adapted with permission from ref. (160)).
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specifically to cancerous cells, the surface of this micelle was
decorated with RGD peptide. In vitro MRI and cytotoxicity
studies demonstrated ultrasensitive MRI imaging and
integrin αvβ3 specific cytotoxic response of this multifunc-
tional polymeric micelle, which holds great promise for clini-
cal theranostic applications (159). As a single theranostic plat-
form, a magneto-polymeric multifunctional nanoparticle has
been synthesized using ultrasensitive MnFe2O4 nanocrystals
and chemotherapeutic agents by amphiphilic block copolymers
for targeted detection by MRI and treatment of breast cancer
(160) (Fig. 5b). The resulting theranostic nanoparticles demon-
strated the ability of inhibiting tumor growth and ultrasensitive
MR imaging. This theranostic model could also be extended to
other cancer types or disease treatment with necessary technical
adjustment. It was recently reported that a flexible hollow
nanoparticle, self-assembled from poly(N-vinylimidazole-co-
N-vinylpyrrolidone)-g-poly(D,L-lactide) graft copolymers and
methoxyl/functionalized-PEG-PLA diblock copolymers, as an
anticancer drug carrier for cancer targeting, imaging, and
therapy (161). This multifunctional hollow nanoparticle ex-
hibits a specific on-off switch drug release behavior, owing to
the pH-sensitive structure of imidazole, to release drug in acidic
surroundings (intracellular endosomes) and to capsulate drug in
neutral surroundings (blood circulation or extracellular matrix).
This unique feature made this multifunctional appropriate
candidate for dynamic drug release monitoring application.
For combined ultrasound tumor imaging and cancer chemo-
therapy, a biodegradable co-polymer was synthesized to stabi-
lize perfluoropentane (PFP) nano/microbubbles, together with
encapsulating anticancer drug, doxorubicin. The resulting
multifunctional nanoparticles are tumor-targeted drug carriers,
long-lasting ultrasound contrast agents, and enhancers of ultra-
sound mediated drug delivery (162).

In summary, the high loading capacity and structural
flexibility of polymeric micelles have drawn much attention
in the rapid development of nanotechnology. It is a challenge
to maintain the structural stability of polymeric micelle by
dramatic blood fluid dilution after intravenous administra-
tion. It is suggested that reversibly cross-linking the core of
micelles could, to some extent, overcome this stability prob-
lem. More efforts are still needed to increase the micelle
stability while maintaining high drug delivery efficiency in
developing future polymeric micelle based theranostics.

DENDRIMERS FOR THERANOSTIC APPLICATION

Dendrimers are polymeric materials with hyperbranched
nanostructures. The size of dendrimer can be tailored by
controlling the number of polymerization generations. As po-
lymerization progresses, a small, planar molecule initiator
grows into a spherical nanostructure with cavities that thera-
peutics and contrast agents can be grafted. The final dendrimer

molecular weight and chemical composition could be precisely
controlled during the polymerization process. Those features
facilitate individualized nanomedicine in theranostic agent
development.

As a therapeutic agent itself, a specially designed
dendrimer is under evaluation as a microbicide to prevent
HIV and HSV infections (163). In anticancer therapy, it was
reported that a generation 6 (G6) poly-L-lysine (PLL)
dendrimer could act as an effective antiangiogenic therapeu-
tic agent leading to solid tumor growth arrest (164). In that
report, different animal models were used to evidence the
antiangiogenic feature of the PLL dendrimer.

As multiple functional groups are available on a dendrimer
backbone, many moieties could be conjugated or loaded onto
the dendrimer for various purposes. It was reported that G5
poly(amido amine) (PAMAM) was conjugated with anticancer
drug paclitaxel, fluorescent imaging agent fluorescein isothio-
cyanate (FITC), and a targeting ligand folic acid, as an inte-
grated system for cancer cell targeted fluorescence imaging
guided anticancer drug delivery (165). As in many cases, the
potential toxicity of dendrimer is a serious concern for its
clinical use. To overcome this, a biodegradable dendrimer
was synthesized with Br-76 labeling for noninvasive angiogen-
esis imaging. A well-established angiogenesis marker targeting
ligand, c(RGDfK) was also conjugated onto the dendrimer
backbone for improved specificity (166). Another tumor
targeting ligand, vascular endothelial growth factor (VEGF),
has been conjugated with a boronated dendrimer for VEFG
receptor targeting in neutron capture therapy of cancer (167).

In 1994, Wiener and coworkers were the first to validate
the feasibility of using dendrimers chelated with metal ions as
MRI contrast agents (168). Also, many conventional imaging
agents, such as Gd-DOTA, could also be covalently grafted
onto the dendrimer backbone for molecular imaging
(169,170). In addition to the covalent conjugation and metal
chelation, dendrimers are also widely used as coating layers
to encapsulate inorganic nanoparticles for molecular imag-
ing, due to the enhanced interaction of nanoparticles with
dendrimer outer layers (171). It was demonstrated that acet-
ylated dendrimer-entrapped gold nanoparticles were suitable
for in vitro and in vivo computed tomography (CT) imaging of
cancer cells (172). Fluorescent quantum dots could also be
entrapped within folic acid modified dendrimer for imaging
folate receptor overexpressing cancer cells (173). Other inor-
ganic imaging nanoparticles, such as iron oxide (173,174),
carbon nanotube (175) could interact with different molecular
weight dendrimers for enhanced cellular uptake for cellular
tracking or imaging. As a theranostic agent, a fluorinated
dendrimer was used for concurrent drug delivery and molec-
ular imaging with 19F MRI (176) (Fig. 6). In another recent
research, an apoptosis induction protein drug, cytochrome c,
was co-encapsulated with NIR dye into a novel synthetic
water-soluble hyperbranched polyhydroxyl dendrimer. This
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theranostic nanoparticle agent carrying an endogenous cellu-
lar apoptotic initiator (cytochrome c) and a fluorescent tag
(ICG), was believed to hold promise for translation into the
clinic (177).

Although dendrimers are widely used for the develop-
ment of theranostic agents, their inherent toxicity arising
from the multiple cationic ions can be a concern for clinical
applications. It is suggested that the blockage of the unused
cations by chemical modification may somehow lower the
potential toxicity of dendrimers.

Another issue with dendrimer is the difficulty of purification.
A dendrimer is assembled from amultifunctional core, which is
extended outward by a series of reactions. Incompletion of the
reaction will likely cause undesired trailing generations. Such
impurities can impact the functionality and symmetry of
the dendrimer, but are extremely difficult to purify out be-
cause the relative size difference between perfect and imper-
fect dendrimers is very small.

CONCLUSIONS

In this review article, we summarized the recent advances of
polymeric materials aimed for sophisticated multifunctional
theranostic agent development for biomedical application.
The advantages of employing polymers as vehicles for
theranostic agents are obvious. First of all, it was evidenced

by numerous results that polymeric nanoparticles hold high
capacity to sequester sufficient therapeutic compounds for
disease treatment or contrast agents for improved imaging
quality. Secondly, the structural versatility of widely avail-
able polymeric materials, from both natural and synthetic
sources, facilitates nanoparticle functionalization for ligand
directed active targeting or nanoparticle surface manipula-
tion to reduce unfavorable protein-nanoparticle interaction
for in vivo theranostic applications. Thirdly, many polymeric
materials are biodegradable, biocompatible and of low tox-
icity, if any, to mammalian cells. These biologically friendly
features also make polymeric nanoparticles attractive for
translational theranostic agent development. Last but not
least, polymeric nanoparticles could be combined with other
materials, such asmetallic nanoparticles or silica nanoparticles
to form nanoscale complexes with diverse functions.

Up to now, polymeric nanoparticles have achieved a
number of encouraging successes, and some of the polymeric
materials based drug or imaging agent formulations are
currently under clinical trials. However, the inherent disad-
vantages of polymeric nanoparticles, such as the vulnerabil-
ity with hydrolysis or proteolysis, stability issues, should be
paid much attention in our future design of polymeric ma-
terial based theranostic agents.

Additionally, the design of theranostic agents with both
therapy and imaging functions also suffer from numerous
limitations. For example, the loading capacity of nanoparticles

Fig. 6 (a) Noninvasive imaging
with 19F MRI. The inferior vena
cava (IVC) of female B6 mouse
was surgically catheterized just
below the level of the liver to
enable intravenous (i.v.) injection
of 4 mg of PEGylated, fluorinated
PAMAM (G3) particulates; (b) Fate
of the fluorinated PAMAM(G3)
particulates following exposure to
low pH compartments: (a)
pH-dependence of T1 relaxation
times observed by 19F magnetic
resonance spectroscopy indicates
a stable, rigid fluorine network
within the particulate at
physiological pH that is disrupted at
low pH; (b) Scanning electron
micrograph of fluorinated
PAMAM (G3) particulates.
(Adapted with permission from
ref. (177)).
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may be challenged when therapeutic medicine and imaging
agent are simultaneously loaded into the nanoformulations.
Hence, the choice of optimal nanoformulation method is very
critical in fabricating effective theranostic agents. For imaging
purpose, many imaging agents, such as radioisotopes or
fluorophores, are simply labeled or conjugated onto the poly-
mer backbone. The pharmacokinetics (PK) and toxicity of
these imaging agents labeled polymers have not been fully
investigated. Furthermore, most imaging modalities in
theranostic agents are not fully utilized, but just employed as
simple evaluation tools for either diagnostic or prognostic
purposes before or after therapeutics are administered. How-
ever, there is no guarantee that the imaging results could
directly reflect the therapeutic outcomes. The correlation
between imaging results and therapeutic efficacy needs to be
investigated for reliable theranostic agent preparation. Also,
the optimal time interval between molecular imaging and
therapeutic intervention of diseases requires further under-
standing of the functions and characteristics of the theranostic
agents.

As an integrated all-in-one platform, the development of
theranostic agents points to the goal of individualized med-
icine, where drug and/or imaging doses could be designed
according to individual requirement. Although only very few
theranostic agents are currently in clinical trials, the cooper-
ative combination of therapeutic and diagnostic agents in
polymeric nanoparticles would significantly contribute to the
clinical translation of theranostic agents for improved diag-
nosis and therapy to improve the health of human beings.
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